Final-Term exam (A) - Time: 3 Hour

Semester: Sep. 2013 / Jan. 2014

Electrical Eng. Dept.
Faculty of Engineering
Benha University

Answer the following questions:

1- True or false section

a.	The expectation of a random variable uniformly distributed over (a, b) is equal to (b+a).	(F)	1pt.
<i>b</i> .	If a and b are constants and X is a random variable and $Y=aX+b$, then $f_Y(y)=\frac{1}{ a }f_X\left(\frac{y-b}{a}\right)$.	(T)	1pt.
<i>c</i> .	If a and b are constants and X is a random variable, then $Var(aX + b) = a^2Var(X)$	(T)	1pt.
d.	The expected value of a product of two independent random variables is $E(XY) = E(X)E(Y)$	(T)	1pt.
e.	A continuous random variable is a random variable that can assume only countable values	(F)	1pt.
f.	If A is an event of a sample space with $P(A)=P(A^{c})$, then $P(A)=0.5$	(T)	1pt.
g.	If A and B are any two events of a sample space S, then the multiplication rule is:		
	P(A and B)=P(A). P(B)	(F)	1pt.
h.	If two events are mutually exclusive, they are also independent	(F)	1pt.
i.	The mean of a continuous random variable X is found by multiplying X by its own probability		
	density function and then integrate the product over all values of X; that is $\mu = \int_{-\infty}^{\infty} x f_x(x) dx$	(T)	1pt.
j.	Two events A and B are said to be independent if $P(A \text{ and } B) = P(A) + P(B)$	(F)	1pt.

2- Choose the correct answer (put circle on the correct answer)

a.	If the continuous random variable <i>X</i>	is uniformly distr	ributed with a mo	ean of 60 and a variance of	
	300. The probability that <i>X</i> lies between 50 and 80 is:				
	A 1/4 B 1/3	\mathbf{C} 1/2	D 2/3	E none of the above	2pt.
<i>b</i> .	If a random variable <i>X</i> has a probable	ility density funct	ion		
	$f(x) = \begin{cases} \frac{1}{16} (3x^2 + 4) & 0 \le x \le 2\\ 0 & elsewhere \end{cases}$; then the varianc	e of X is closest	to:	
	A 5/4 B 25/16	C 0.536	D 0.304	E none of the above	2pt.
<i>c</i> .	The continuous random variable <i>X</i> h	as probability der	nsity function f g	iven by:	
	$f(x) = \begin{cases} \left \frac{1}{4} (2 - x) \right & 0 \le x \le 4 \\ 0 & \text{otherwise} \end{cases}; t$	hen E(X ²) is equal	to:		
	A $\frac{4}{3}$ B $\frac{16}{3}$	C 6	D 54	E none of the above	2pt.
d.	If random variable <i>X</i> has a mean μ_X	= 5 and a standar	d deviation $\sigma_X =$	= 4, and $Y = 2 - 2X$ then:	2ρι.
	$\mathbf{A} \ \mu_Y = 8 \ \text{and} \ \sigma_Y = 4$		and $\sigma_Y = 8$		
	C $\mu_Y = -8 \text{ and } \sigma_Y = 16$	• -	and $\sigma_Y = -8$		2pt.
e.	Let <i>X</i> be a real-valued, continuous redistribution function $F_y(y)$:	andom variable ar	$1 \text{ Ind } Y = X^2. \text{ The}$	en, If $y \ge 0$, then the cumulative	
	$\mathbf{A} \ F_x(-\sqrt{y}) - F_x(\sqrt{y})$		$\overline{y} - F_{x}(-\sqrt{y})$		
	$\mathbf{C} \ F_x(\sqrt{y}) + F_x(-\sqrt{y})$	$\mathbf{D} -F_{\chi}(x)$	\sqrt{y}) – $F_x(-\sqrt{y})$		
					2pt.

Final-Term exam (A) - Time: 3 Hour

Semester: Sep. 2013 / Jan. 2014

Electrical Eng. Dept. Faculty of Engineering Benha University

3.	a.	If $P(A)=0.6$, $P(B)=0.5$ and $P(A \text{ or } B)=0.8$. What is the $P(A \text{ and } B)$?.	2.5
J.	a.	P(A and B) = P(A) + P(B) - P(A or B) = 0.6 + 0.5 - 0.8 = 0.3	pt.
	b.	Consider the probability mass function $P(x) = \frac{6- x-7 }{36}$ for $x=2, 3, 4, 5,,12$. What will be $p(4 < x < 6)$?.	
		$p(4 < x < 6) = p(x = 5) = P(5) = \frac{6 - 5 - 7 }{36} = \frac{4}{36}$	2.5 pt.
	c.	A telemarketer selling service contracts. He has sold 10 in his last 100 calls (<i>p</i> =.1). If he calls 15 people tonight, what's the probability of: A. No sales? B. At least 2 sales?	
		Binomial distribution $p(x) = \binom{n}{x} p^x q^{n-x} = \frac{n!}{x! (n-x)!} p^x (1-p)^{n-x}$	
		n=15 p=0.1 A. $p(0) = \frac{15!}{(0!)(15!)} 0.1^{0} (1-0.1)^{15-0} = 0.206$	
		B. $p(1) = \frac{15!}{1! (14)!} 0.1^1 (1 - 0.1)^{14} = 0.3432$	2.5
	<u> </u>	p(at least two sales) = 1 - [p(0) + p(1)] = 1 - [0.206 + 0.3432] = 0.4508	pt.
	d.	Data packets arrive at a network node on the average at a rate of 60 packets per minute. What is the probability of 5 packets arriving in 4 seconds?	
		Poisson Distribution $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$	
		λ =60 packets per minute = 4 packet per 4 seconds	
		$p(5 \text{ packets arriving in 4 seconds}) = \frac{4^5 e^{-4}}{5!} = 0.1563$	2.5 pt.

Find the <i>pdf</i> of X. Be sure to give a formula for $f_X(x)$ that is valid for all x. $f_X(x) = \frac{d}{dx} F(x) = \begin{cases} 0 & x \le 0, \\ 2x & 0 < x \le 1 \\ 0 & x > 1. \end{cases}$ c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
a. Determine the constants a and b. $a = 0, where \lim_{x \to -\infty} F(x) = 0$ $b = 1, where \lim_{x \to \infty} F(x) = 1$ b. Find the <i>pdf</i> of X. Be sure to give a formula for $f_X(x)$ that is valid for all x. $f_X(x) = \frac{d}{dx}F(x) = \begin{cases} 0 & x \le 0, \\ 2x & 0 < x \le 1 \\ 0 & x > 1. \end{cases}$ c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
a. Determine the constants a and b. $a = 0, where \lim_{x \to -\infty} F(x) = 0$ $b = 1, where \lim_{x \to \infty} F(x) = 1$ b. Find the <i>pdf</i> of X. Be sure to give a formula for $f_X(x)$ that is valid for all x. $f_X(x) = \frac{d}{dx}F(x) = \begin{cases} 0 & x \le 0, \\ 2x & 0 < x \le 1 \\ 0 & x > 1. \end{cases}$ c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
$a = 0, \text{where } \lim_{x \to -\infty} F(x) = 0$ $b = 1, \text{where } \lim_{x \to \infty} F(x) = 1$ $b. \text{Find the } pdf \text{ of } X. \text{ Be sure to give a formula for } f_X(x) \text{ that is valid for all } x.$ $f_X(x) = \frac{d}{dx} F(x) = \begin{cases} 0 & x \le 0, \\ 2x & 0 < x \le 1 \\ 0 & x > 1. \end{cases}$ $c. \text{Calculate the expected value of } X.$ $E[x] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 2x^2 dx = \frac{2x^3}{3} _0^1 = 2/3$ $d. \text{Calculate the standard deviation of } X.$	
b. Find the pdf of X. Be sure to give a formula for $f_X(x)$ that is valid for all x. $f_X(x) = \frac{d}{dx}F(x) = \begin{cases} 0 & x \le 0, \\ 2x & 0 < x \le 1 \\ 0 & x > 1. \end{cases}$ c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
b. Find the pdf of X. Be sure to give a formula for $f_X(x)$ that is valid for all x. $f_X(x) = \frac{d}{dx}F(x) = \begin{cases} 0 & x \le 0, \\ 2x & 0 < x \le 1 \\ 0 & x > 1. \end{cases}$ c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
$f_x(x) = \frac{d}{dx} F(x) = \begin{cases} 0 & x \le 0, \\ 2x & 0 < x \le 1 \\ x > 1. \end{cases}$ c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_x(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	2 pt.
c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_x(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_x(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_x(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
c. Calculate the expected value of X. $E[x] = \int_{-\infty}^{\infty} x f_x(x) dx = \int_{0}^{1} 2x^2 dx = \frac{2x^3}{3} _{0}^{1} = 2/3$ d. Calculate the standard deviation of X.	
$E[x] = \int_{-\infty}^{\infty} x f_x(x) dx = \int_0^1 2x^2 dx = \frac{2x^3}{3} _0^1 = 2/3$ d. Calculate the standard deviation of X.	2 pt.
d. Calculate the standard deviation of X.	
d. Calculate the standard deviation of X.	
d. Calculate the standard deviation of X.	
	2 pt.
$\frac{1}{2}$	
Γ	
$E[x^2] = \int_{-\infty}^{\infty} x^2 f_x(x) dx = \int_{0}^{1} 2x^3 dx = \frac{2x^4}{4} \Big _{0}^{1} = \frac{1}{2}$	
$\sigma^2 = E[x^2] - E^2[x] = 1/18$	
	2 pt.

Final-Term exam (A) - Time: 3 Hour

Semester: Sep. 2013 / Jan. 2014

Electrical Eng. Dept. Faculty of Engineering Benha University

e.	Find a form for $f_x(x/X>0)$.		
	$f_{x}(x)$ $f_{x}(x)$	$x \leq 0$,	
	$f_{x}(x/x > 0) = \frac{1}{(x-x)^{2}} = f_{x}(x) = \{2x\}$	$0 < x \le 1$	
	$p(X > 0) \qquad $	x > 1.	2

5.		In most communication systems, the noise (X) is treated as an additive Gaussian noise (random	
		variable with normal distribution). If the noise mean is equal to zero and the variance is equal to	
		4.	
		$z = \frac{x - \mu}{z} = \frac{x}{2}$	
		$\sigma \sim \omega$	
	a.	Find the probability $P(X>0.5)$.	3 pt.
		$p(x > 0.5) = p(z > 0.25) = 1 - p(z < 0.25) = 1 - F_z(0.25) = 0.4013$	
	b.	Find the probability $P(X<-0.5)$.	3 pt.
		$p(x < -0.5) = p(z \le -0.25) = p(z > 0.25) = 1 - F_z(0.25) = 0.4013$	_
	c.	Find the probability $P(-2 \le X \le 2)$.	3 pt.
		$p(-2 < x < 2) = p(-1 < z < 1) = 1 - 2F_z(-1) = -1 + 2F_z(1) = 0.6826$	1
	d.	Use the Chebychev inequality to get an upper limit for $P(X - \mu \ge 2\sigma)$	3 pt.
		Chebychev inequality states that $P(X - \mu \ge \varepsilon) \le \frac{\sigma^2}{c^2}$, So	
		ε^2	
		$P(\mid X - \mu \mid \geq 2\sigma) \leq \sigma^2 / 4\sigma^2 = 1/4$	

6.	a.	Suppose the random variable (X) is uniformly distributed on the interval from 1 to 2. Compute the pdf and expected value of the random variable $Y = 1-X$.	4 pt.
		In general	
		Y = aX + b	
		Suppose $a > 0$.	
		$F_{Y}(y) = P(Y(\xi) \le y) = P(aX(\xi) + b \le y) = P\left(X(\xi) \le \frac{y - b}{a}\right) = F_{X}\left(\frac{y - b}{a}\right).$	
		and $f_Y(y) = \frac{1}{a} f_X \left(\frac{y - b}{a} \right)$.	
		On the other hand if $a < 0$. then	
		$F_{Y}(y) = P(Y(\xi) \le y) = P(aX(\xi) + b \le y) = P\left(X(\xi) > \frac{y - b}{a}\right)$	
		$=1-F_{X}\left(\frac{y-b}{a}\right),$	
		and hence $f_Y(y) = -\frac{1}{a} f_X \left(\frac{y-b}{a} \right)$.	
		then, for all a	
		$f_Y(y) = \frac{1}{ a } f_X\left(\frac{y-b}{a}\right).$	
		Where X is uniformly distributed on the interval from 1 to 2. And a=-1 and b=1; then	
		$f_y(y) = \begin{cases} 1 & -1 < y \le 0 \\ 0 & elsewher \end{cases}$ uniform distribution on the interval from -1 to 0	
		E[y] = E[1 - x] = 1 - E[x] = 1 - 1.5 = -0.5	

Final-Term exam (A) - Time: 3 Hour

Semester: Sep. 2013 / Jan. 2014

Electrical Eng. Dept.
Faculty of Engineering
Benha University

b. Use the moment generating function $(M(t) = E[e^{tX}])$ to get formulas for the mean, mean-square value and the variance of the binomial distribution.

$$M(t) = E[e^{tX}]$$

$$= \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (pe^{t})^{k} (1-p)^{n-k}$$

$$M'(t) = n(pe^{t} + 1- p)^{n-1} pe^{t}$$

 $=(pe^{t}+1-p)^{n}$

$$M''(t) = n(n-1)(pe^{t} + 1 - p)^{n-2}(pe^{t})^{2} + n(pe^{t} + 1 - p)^{n-1}pe^{t}$$

- $\blacksquare \quad \text{Mean} = M'(0) = \text{np}$
- \blacksquare E[X²] = M''(0) = n(n-1)p² + np
- Variance = $E[X^2] (E[X])^2 = n(n-1)p^2 + np (np)^2 = np(1-p)$

4 pt.